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Minimal surfaces

• A minimal surface is a surface that (locally) minimizes the surface area, subject to 
boundary conditions.

• How would a minimal surface in a random environment look like?
(e.g., when perturbing the area measure with local random perturbations)
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Natural phenomenon With practical applications



Minimal paths in a random environment:
First-passage percolation (Hammersley–Welsh 1965)

• We consider the discrete setting of the lattice ℤ𝐷 with 𝐷 ≥ 2.

• Edge weights: Independent and identically distributed non-negative 𝜏𝑒 𝑒∈𝐸 ℤ𝐷 .

Distribution of 𝜏𝑒 assumed “nice”. For instance, 𝜏𝑒 ∼ Uniform[𝑎, 𝑏] for 𝑏 > 𝑎 > 0.

• Passage time: A random metric 𝑇𝑢,𝑣 on ℤ𝐷 given by

𝑇𝑢,𝑣 ≔ min ෍

𝑒∈𝑝

𝜏𝑒

      with the minimum over paths 𝑝 connecting 𝑢 and 𝑣.

Weights uniform on [1,10]
u = (0,0), v = (15,0)
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Minimal paths in a random environment:
First-passage percolation (Hammersley–Welsh 1965)

• We consider the discrete setting of the lattice ℤ𝐷 with 𝐷 ≥ 2.

• Edge weights: Independent and identically distributed non-negative 𝜏𝑒 𝑒∈𝐸 ℤ𝐷 .

Distribution of 𝜏𝑒 assumed “nice”. For instance, 𝜏𝑒 ∼ Uniform[𝑎, 𝑏] for 𝑏 > 𝑎 > 0.

• Passage time: A random metric 𝑇𝑢,𝑣 on ℤ𝐷 given by

𝑇𝑢,𝑣 ≔ min ෍

𝑒∈𝑝

𝜏𝑒

      with the minimum over paths 𝑝 connecting 𝑢 and 𝑣.

• Geodesic: The unique path 𝑝 realizing 𝑇𝑢,𝑣, denoted 𝛾𝑢,𝑣.
Geodesic is a 1-dimensional “minimal surface” in 𝐷-dimensional space.

• Goal: Understand the large-scale properties of the metric 𝑇.
In particular, understand the geometry and length of long geodesics.
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Roughness and length exponents I
• How far is the geodesic from a straight line?

• Roughness exponent: Believed that maximal deviation scales as 𝐿𝜉𝐷  for length 𝐿 
geodesic, with 𝜉𝐷 the same in all directions.

• Believed that 𝜉2 =
2

3
 (super-diffusivity!)

• Believed that 𝜉𝐷+1 ≤ 𝜉𝐷 and 𝜉𝐷 ≥
1

2
 for all 𝐷.

• Open problem (even) in physics: Does 𝜉𝐷 =
1

2
 (diffusive behavior) for some 𝐷?

• Rigorous results: 𝜉𝐷 ≥
1

𝐷+1
 for all 𝐷 (Licea-Newman-Piza 96).

• No non-trivial upper bound on 𝜉𝐷!!! (trivial bound 𝜉𝐷 ≤ 1)

• Coalescence of geodesics: Non-quantitative results in 𝐷 = 2: Damron-Hanson 15, 
Ahlberg-Hoffman 16. Strong conditional results for all 𝐷: Alexander 20.

Quantitative coalescence in 𝐷 = 2 (coalescence exponent ≥
1

8
) and variant of 

midpoint problem for all 𝐷 (Dembin-Elboim-P. 24, 25).
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Roughness and length exponents II
• Length fluctuation exponent: Believed that the standard deviation of the passage 

time scales as 𝐿𝜒𝐷 , with 𝜒𝐷 the same in all directions:

𝑆𝑡𝑑 𝑇𝟎,𝐿𝑣 = 𝐿𝜒𝐷+𝑜(1)

• Predicted scaling relation: 𝜒𝐷 = 2𝜉𝐷 − 1.

• Rigorous results:

𝑆𝑡𝑑 𝑇𝟎,𝐿𝑣 ≤ 𝑐
𝐿

log 𝐿
     (Benjamini-Kalai-Schramm 03)

𝑆𝑡𝑑 𝑇𝟎,𝐿𝑣 ≥ 𝑐 log 𝐿   for 𝐷 = 2   (Newman-Piza 95)

• Scaling relation established conditionally (under assumptions which are presently 
unverified on the exponents and limit shape, Chatterjee 13, Auffinger-Damron 14).

• The book “50 Years of First-Passage Percolation” by Auffinger-Damron-Hanson 15 
surveys the rigorous state-of-the-art.
Many basic questions remain open.

• Detailed understanding available in two dimensions (D = 2) for a related 
integrable model: Directed last-passage percolation (with specific edge weight 
distributions). However, no integrable first-passage percolation model is known.
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Minimal surfaces in a random environment I
• In dimension 𝐷 = 2, the first-passage percolation geodesic is equivalently 

represented as the minimal cut in the dual network, which separates the upper 
half of the boundary from the lower half of the boundary.

• This point of view extends to higher
dimensions 𝐷 to yield a minimal surface:
The surface is composed of the (D-1)-
dimensional plaquettes dual to the edges
in the minimal cut which separates the
upper and lower halves of the boundary.
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A plaquette is the dual
of an edge



Minimal surfaces in a random environment II

• The minimal surface admits an equivalent statistical mechanics description: 

• Recall that 𝜏 = 𝜏𝑒 𝑒∈𝐸 ℤ𝐷  are the edge weights.

• Random-bond Ising model in the environment 𝜏: Configurations 𝜎: ℤ𝐷 → −1,1  
with (quenched, formal) Hamiltonian 𝐻𝜏 𝜎 ≔ − σ𝑢~𝑣 𝜏 𝑢,𝑣 𝜎𝑢𝜎𝑣.

• The minimal surface is the domain wall of the ground state of the random-bond 
Ising model with Dobrushin boundary conditions.
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D=3 (dimension d=2, codimension n=1)
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spins -1 and 1
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Minimal surfaces in a random environment III

• Basic challenge: How flat is the minimal surface? Does its maximum reach a power 
of 𝐿? Power of logarithm of 𝐿? Order 1 in 𝐿?

• Weights: Let 𝑏 > 𝑎 > 0.
Take the weights 𝜏𝑒  independent,
each distributed as Uniform[𝑎, 𝑏].

• Theorem (Bassan-Dario-P. 25+):
The surface delocalizes for 𝑑 = 2 (e.g., expected highest sign change above a 

uniformly chosen vertex in Λ𝐿 is ≥ 𝑐 log log 𝐿).

• Theorem (Bassan-Gilboa-P. 23): If
𝑏−𝑎

𝑎
 is small then the surface localizes for 𝑑 ≥ 3.

• Bovier–Külske 94,96 previously obtained (non-quantitative versions of) such 
theorems in the disordered Solid-On-Solid approximation (disallowing overhangs).

• Conjecture (Bassan-Gilboa-P. 23. Earlier in physics literature):

1) 𝑑 = 3: the surface delocalizes when
𝑏−𝑎

𝑎
 is large

(leading to a roughening transition in the disorder strength in dimension 𝑑 = 3!).
2) The surface localizes (for all 𝑏 > 𝑎 > 0) when 𝑑 ≥ 5 (possibly also for 𝑑 = 4).
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Harmonic minimal surfaces in a random environment

• Minimal surfaces in a random environment (abstract idea):
𝑑-dimensional surfaces in D=(𝑑 + 𝑛)-dimensional space which minimize the sum 
of their elastic energy and their environment potential energy, subject to given 
boundary conditions.
Of interest in its own right, and related to aforementioned systems.
We seek a model which is more amenable to analysis!

• Harmonic minimal surfaces in a random environment (Dembin–Elboim–Hadas–P. 24):
Configurations are 𝜑: ℤ𝑑 → ℝ𝑛 (continuous rather than integer valued!).
Quenched disorder is 𝜂: ℤ𝑑 × ℝ𝑛 → (−∞, ∞] and disorder strength is 𝜆 > 0.
In a finite domain Λ ⊂ ℤ𝑑, the Hamiltonian is

𝐻𝜂,𝜆,Λ(𝜑) ≔
1

2
෍
𝑢∼𝑣

𝑢,𝑣 ∩Λ≠∅

𝜑𝑢  − 𝜑𝑣 2
2 + 𝜆 ෍

𝑣∈Λ

𝜂𝑣,𝜑𝑣

The minimal surface 𝜑𝜂,𝜆,Λ,𝜏 is the configuration minimizing 𝐻𝜂,𝜆,Λ(𝜑) among 
configurations which coincide with boundary conditions 𝜏: ℤ𝑑 → ℝ𝑛 outside Λ.

(an 𝑛-component Gaussian free field in a random environment).

• Goal: Study the geometry and energy of the minimal surface on large domains.
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Harmonic minimal surfaces in a random environment – 
explanation of model

• Harmonic minimal surfaces in a random environment (Dembin–Elboim–Hadas–P. 24):
Configurations are 𝜑: ℤ𝑑 → ℝ𝑛 (continuous rather than integer valued!).
Quenched disorder is 𝜂: ℤ𝑑 × ℝ𝑛 → (−∞, ∞] and disorder strength is 𝜆 > 0.
In a finite domain Λ ⊂ ℤ𝑑, the Hamiltonian is

𝐻𝜂,𝜆,Λ(𝜑) ≔
1

2
෍
𝑢∼𝑣

𝑢,𝑣 ∩Λ≠∅

𝜑𝑢  − 𝜑𝑣 2
2 + 𝜆 ෍

𝑣∈Λ

𝜂𝑣,𝜑𝑣
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Overhangs allowed
Integer heights
Cost to change height is linear in gradient

No overhangs (function above base)
Real heights (more generally, in ℝ𝑛)
Cost to change height is quadratic in gradient



Harmonic minimal surfaces in a 
random environment - background

• Harmonic minimal surfaces in random environment (harmonic MSRE):
Configurations are 𝜑: ℤ𝑑 → ℝ𝑛 (continuous rather than integer valued!).
Quenched disorder is 𝜂: ℤ𝑑 × ℝ𝑛 → (−∞, ∞] and disorder strength is 𝜆 > 0.
In a finite domain Λ ⊂ ℤ𝑑, the Hamiltonian is

𝐻𝜂,𝜆,Λ(𝜑) ≔
1

2
෍
𝑢∼𝑣

𝑢,𝑣 ∩Λ≠∅

𝜑𝑢  − 𝜑𝑣 2
2 + 𝜆 ෍

𝑣∈Λ

𝜂𝑣,𝜑𝑣

The minimal surface 𝜑𝜂,𝜆,Λ,𝜏 is the configuration minimizing 𝐻𝜂,𝜆,Λ(𝜑) among 
configurations which coincide with boundary conditions 𝜏: ℤ𝑑 → ℝ𝑛 outside Λ.

• Mathematics literature: 𝑑 = 𝑛 = 1: Bakhtin et al. 16-19 in connection to the 
Burgers equation.  On ℝ𝑑=1, n= 1: Bakhtin–Cator–Khanin 14. Related literature on 
Brownian polymers in random environment – see review by Comets-Cosco 18.
Fixed 𝑑 and 𝑛 → ∞: Ben-Arous–Bourgade–McKenna 21 (landscape complexity for 
the Elastic Manifold, following Fyodorov–Le Doussal 20).

• Physics literature (also related models): Huse–Henley 85, Kardar 87, Natterman 87, 
Middleton 95, Emig–Nattermann 98, Scheidl–Dincer 00, Le Doussal–Wiese–
Chauve 04, Husemann–Wiese 18. Reviews: Forgacs–Lipowsky–Nieuwenhuizen 91 
(in Domb–Lebowitz vol. 14), Giamarchi 09, Wiese 22.
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Harmonic minimal surfaces in a 
random environment – disorder

• Our initial focus is on distributions of the disorder 𝜂: ℤ𝑑 × ℝ𝑛 → −∞, ∞  which 
are “independent”.

• Main example: smoothed white noise, defined as follows:

– 𝜂𝑣,⋅ 𝑣∈ℤ𝑑  are independent.

–  𝜂𝑣,𝑡 = (𝑊𝑁𝑣 ∗ 𝑏)(𝑡) with 𝑊𝑁𝑣  a white noise and 𝑏 a “bump function” satisfying:

(1) 𝑏 ≥ 0 and 𝑏 𝑡 = 0 when 𝑡 ≥ 1, (2) ∫ 𝑏 𝑡 2𝑑𝑡 = 1, (3) 𝑏 is a Lipschitz function.

• Abstract assumptions (all hold for smoothed white noise): 

– we always assume suitable energy minimizers exist.

– (stat): for 𝑠: ℤ𝑑 → ℝ𝑛, the shifted disorder 𝜂𝑣,𝑡
𝑠 ≔ 𝜂𝑣,𝑡−𝑠𝑣

 has the same distribution as 𝜂.

– (indep): the 𝜂𝑣,⋅ 𝑣∈ℤ𝑑  are independent. For each 𝑣, the process 𝑡 ↦ 𝜂𝑣,𝑡 is independent 

at distance 2.

– (conc): Write GE𝜂,𝜆,Λ,𝜏 ≔ 𝐻𝜂,𝜆,Λ(𝜑𝜂,𝜆,Λ,𝜏) for the ground energy.
Then for each 𝜆 > 0, 𝜏: ℤ𝑑 → ℝ𝑛 and finite Δ ⊂ Λ ⊂ ℤ𝑑 , conditioned on 𝜂ȁΔ𝑐×ℝ𝑛  we 

have that Std GE𝜂,𝜆,Λ,𝜏 ≤ 𝐶𝜆 Δ  with Gaussian tails on this scale.

• Assumptions (stat)+(indep) allow, e.g., to vary disorder strength between vertices.

• For later reference: (stat)+(conc) hold also for periodic disorder.
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Localization and delocalization
• We consider the transversal fluctuations of the harmonic MSRE surface on the domain

Λ𝐿 ≔ −𝐿, −𝐿 + 1, … , 𝐿 𝑑 with zero boundary conditions.

• Theorem (Localization, (stat)+(conc)) (Dembin–Elboim–Hadas–P. 24): There exists 𝐶 > 0, 
depending only on 𝑑, 𝑛 and the distribution of 𝜂, such that for each 𝑣 ∈ Λ𝐿,

𝔼 𝜑𝑣
𝜂,𝜆,Λ𝐿 ≤ 𝐶 𝜆 ൞

𝐿
4−𝑑

4 𝑑 = 1,2,3
log 𝐿 𝑑 = 4

1 𝑑 ≥ 5

• Theorem (Delocalization, smoothed white noise) (Dembin–Elboim–Hadas–P. 24): There exists 
𝑐 > 0, depending only on the distribution of 𝜂 and the disorder strength 𝜆 > 0, such that

15

• Physics predictions for 𝑛 = 1:
d=1: Huse–Henley 85, Kardar 85, Huse–Henley–D.S.Fisher 85, Kardar–Parisi–Zhang 86,
d=2,3: Middleton 95, Scheidl–Dincer 00, Le Doussal–Wiese–Chauve 04, Husemann–Wiese 18, 
d=4: Emig–Nattermann 98,99. 

𝒏 = 𝟏 Lower bound Predicted Upper bound

𝑑 = 1 𝐿0.6 𝐿2/3 𝐿0.75

𝑑 = 2 𝐿0.4 𝐿0.41±0.01 𝐿0.5

𝑑 = 3 𝐿0.2 𝐿0.22±0.01 𝐿0.25

𝑑 = 4 log log 𝐿 0.2 log 𝐿 0.2083… log 𝐿

𝑑 ≥ 5 1 1 1

1

Λ𝐿
𝔼 𝑣 ∈ Λ𝐿 ∶ 𝜑𝑣

𝜂,𝜆,Λ𝐿 ≥ ℎ ≥ 𝑐

    with

    ℎ =

𝐿3/5 𝑑 = 1, 𝑛 = 1

𝐿1/2 𝑑 = 1, 𝑛 ≥ 2

𝐿
4−𝑑

4+𝑛 𝑑 ∈ 2,3

log log 𝐿
1

4+𝑛 𝑑 = 4



Scaling relation
• Consider now the harmonic MSRE surface on Λ𝐿 = −𝐿, −𝐿 + 1, … , 𝐿 𝑑 with zero boundary 

conditions. It is common in the literature to say that the height fluctuations behave as 𝐿𝜉𝑑,𝑛  
while the ground energy fluctuations behave as 𝐿𝜒𝑑,𝑛.

• Scaling relation: It is proposed (e.g., Huse–Henley 85) that, at least for 𝑑 < 4,
𝜒𝑑,𝑛 = 2𝜉𝑑,𝑛 + 𝑑 − 2

We give rigorous versions of this equality for general 𝑑, 𝑛. Write AvgΛ ⋅  for the average 

operation on Λ. Write 𝐺𝐸𝜂,𝜆,Λ for the energy of the minimal surface.

• Theorem ((stat)+(indep)) (Dembin–Elboim–Hadas–P. 24): There exist 𝐶, 𝑐 > 0, depending 
only on 𝑑, such that for all h > 0, all 𝜆 > 0 and unit vector 𝑒 ∈ ℝ𝑛:

First (version of 𝜒𝑑,𝑛 ≥ 2𝜉𝑑,𝑛 + 𝑑 − 2),

ℙ 𝐺𝐸𝜂,𝜆,Λ𝐿 − Med 𝐺𝐸𝜂,𝜆,Λ𝐿 ≥ 𝑐ℎ2𝐿𝑑−2 ≥
1

3
ℙ AvgΛ𝐿

𝜑𝜂,𝜆,Λ𝐿 ⋅ 𝑒 ≥ ℎ

Second (version of 𝜒𝑑,𝑛 ≤ 2𝜉𝑑,𝑛 + 𝑑 − 2), let 𝜂[Λ 𝐿/2 ] be 𝜂 with its middle portion 

resampled (precisely, 𝜂[Λ 𝐿/2 ] is obtained by resampling 𝜂𝑣,⋅ for 𝑣 ∈ Λ 𝐿/2 ). For ℎ ≥ 1,

ℙ 𝐺𝐸𝜂,𝜆,Λ𝐿 − 𝐺𝐸𝜂[Λ 𝐿/2 ],𝜆,Λ𝐿 ≥ 𝐶ℎ2𝐿𝑑−2 ≤ 𝐶ℙ max
𝑣∈Λ𝐿

𝜑𝑣
𝜂,𝜆,Λ𝐿 ⋅ 𝑒 ≥ ℎ

Third, for 𝑑 = 1: Define 𝑀𝑘 ≔ max
𝐿−𝑘≤ 𝑣 ≤𝐿

𝜑𝜂,𝜆,Λ𝐿 ⋅ 𝑒 . Then

𝑐 max
0≤𝑗≤ log2 𝐿

2−𝑗 𝔼𝑀2𝑗
2

≤ 𝑆𝑡𝑑 𝐺𝐸𝜂,𝜆,Λ𝐿 ≤ 𝐶 ෍

0≤𝑗≤ \log2𝐿

2−𝑗 1 + 𝔼𝑀
2𝑗
4
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Main identity
• The following deterministic identity is our main tool for analyzing the harmonic MSRE model. 

• Fix a finite Λ ⊂ ℤ𝑑  and the disorder strength 𝜆 > 0. We abbreviate

𝐻𝜂 𝜑 ≔ 𝐻𝜂,𝜆,Λ 𝜑 =
1

2
෍
𝑢∼𝑣

𝑢,𝑣 ∩Λ≠∅

𝜑𝑢  − 𝜑𝑣 2
2 + 𝜆 ෍

𝑣∈Λ

𝜂𝑣,𝜑𝑣
=

1

2
∇𝜑 Λ

2 + 𝜆 ෍

𝑣∈Λ

𝜂𝑣,𝜑𝑣

• Lemma (Main identity): For each 𝜑: ℤ𝑑 → ℝ𝑛 and 𝑠: ℤ𝑑 → ℝ𝑛 we have

𝐻𝜂𝑠
𝜑 + 𝑠 − 𝐻𝜂 𝜑 = 𝜑, −ΔΛ𝑠 +

1

2
∇𝑠 Λ

2

where −ΔΛ𝑠 𝑣 ≔ σ 𝑢: 𝑢∼𝑣
𝑢,𝑣 ∩Λ≠∅

𝑠𝑣 − 𝑠𝑢  and the shifted disorder 𝜂𝑠: ℤ𝑑 × ℝ𝑛 → −∞, ∞  is

𝜂𝑣,𝑡
𝑠 ≔ 𝜂𝑣,𝑡−𝑠𝑣

• Proof: Indeed, the disorder term cancels in the first equality of

𝐻𝜂𝑠
𝜑 + 𝑠 − 𝐻𝜂 𝜑 =

1

2
( ∇ 𝜑 + 𝑠 Λ

2 − ∇𝜑 Λ
2 )

=
1

2
∇ 𝜑 + 𝑠 , ∇ 𝜑 + 𝑠

Λ
− ∇𝜑, ∇𝜑 Λ = ∇𝜑, ∇𝑠 Λ +

1

2
∇𝑠, ∇𝑠

= 𝜑, −ΔΛ𝑠 +
1

2
∇𝑠 Λ

2

and a discrete Green’s identity is used in the last step.
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Main identity consequences
• Lemma (Main identity): For each 𝜑: ℤ𝑑 → ℝ𝑛 and 𝑠: ℤ𝑑 → ℝ𝑛 we have

𝐻𝜂𝑠
𝜑 + 𝑠 − 𝐻𝜂 𝜑 = 𝜑, −ΔΛ𝑠 +

1

2
∇𝑠 Λ

2

where −ΔΛ𝑠 𝑣 ≔ σ 𝑢: 𝑢∼𝑣
𝑢,𝑣 ∩Λ≠∅

𝑠𝑣 − 𝑠𝑢  and the shifted disorder 𝜂𝑠: ℤ𝑑 × ℝ𝑛 → −∞, ∞  is

𝜂𝑣,𝑡
𝑠 ≔ 𝜂𝑣,𝑡−𝑠𝑣

• Corollary (Effect of boundary conditions, (stat)): Recall that  𝜑𝜂,𝜆,Λ,𝜏 is the minimal surface on 

Λ ⊂ ℤ𝑑  with boundary conditions 𝜏. Write 𝐺𝐸𝜂,𝜆,Λ,𝜏 for its energy. Then

𝜑𝜂,𝜆,Λ,𝜏, 𝐺𝐸𝜂,𝜆,Λ,𝜏 =
𝑑

𝜑𝜂,𝜆,Λ,0, 𝐺𝐸𝜂,𝜆,Λ,0 + ҧ𝜏Λ,
1

2
∇ ҧ𝜏Λ

Λ

2

       where ҧ𝜏Λ is the harmonic extension of 𝜏 to Λ. 
       Extends familiar Shear Invariance to Harmonic Invariance.

• Corollary (Quadratic limit shape, (stat)): expected additional energy for a sloped surface over 
a flat surface is quadratic in the slope.

• Corollary (Concentration inequality for linear functionals of the surface, (stat)+(conc)): For 
each 𝜆 > 0, Λ ⊂ ℤ𝑑 finite, 𝑠: ℤ𝑑 → ℝ𝑛 and 𝑟 > 0: 

ℙ 𝜑𝜂,𝜆,Λ, −ΔΛ𝑠 ≥ 𝑟 ≤ 3 inf
𝛾∈ℝ

ℙ 𝐺𝐸𝜂,𝜆,Λ − 𝛾 ≥
𝑟2

4 ∇𝑠 Λ
2

• This concentration inequality is used to derive the scaling inequality 𝜒𝑑,𝑛 ≥ 2𝜉𝑑,𝑛 + 𝑑 − 2 
and the height fluctuation upper bounds. 18



Scaling relation intuition

• The quadratic limit shape that the expected energy “cost” for a surface with 

boundary condition 0 to equal h in the bulk of the domain is ℎ2L𝑑−2.

• This cost may be compensated by the energy “gain” from the disorder in the bulk, 
which (should be like) the typical energy fluctuation 𝐿𝜒.

• Comparing the two expressions shows that the typical height fluctuation ℎ = 𝐿𝜉  
satisfies 𝜒 = 2𝜉 + 𝑑 − 2.
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Minimal surfaces in a strongly 
correlated random environment I

• The lattice minimal surfaces that we saw were modeling the domain walls of the 
random-bond Ising model.

• It is also of interest to study the domain walls of the random-field Ising model.

• Random-field Ising model: Configurations 𝜎: ℤ𝐷 → −1,1  with (quenched, formal) 
Hamiltonian 

𝐻ℎ 𝜎 ≔ − ෍

𝑢~𝑣

𝜎𝑢𝜎𝑣 − 𝜆 ෍

𝑣

ℎ𝑣𝜎𝑣

       where the (ℎ𝑣) are IID N(0,1) (say), and the field strength 𝜆 is small.

• For the model of harmonic minimal surfaces, this translates to taking the disorder 
to be a two-sided Brownian motion (instead of regularized white noise).
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Minimal surfaces in a strongly 
correlated random environment II

• Studying domain walls in the random-field Ising model corresponds to taking a 
two-sided Brownian motion disorder for harmonic minimal surfaces.

• More generally, we consider harmonic minimal surfaces with fractional Brownian 

disorder with Hurst parameter 𝐻 ∈ 0,1  on ℝ𝑛 (Brownian case: 𝐻 =
1

2
 and 𝑛 = 1).

• The disorder is not stationary but has stationary increments.

• We identify the precise height and energy fluctuation exponents in all but the 
critical dimension 𝑑 = 4. The exponents are the same for all codimensions 𝑛.

• Theorem (Dembin-Elboim-P. 25): Dimensions 𝑑 = 1,2,3: The exponents are:

𝜉 =
4 − 𝑑

4 − 2𝐻
, 𝜒 =

4 − 𝑑

2 − 𝐻
+ 𝑑 − 2

       They are determined by the two scaling relations:

𝜒 = 2𝜉 + 𝑑 − 2 = 𝐻𝜉 +
𝑑

2

• Critical dimension (𝑑 = 4): Height delocalization in log log 𝐿
1

4−2𝐻, log 𝐿
5

4−2𝐻 .

Energy fluctuation in [𝐿2 log log 𝐿
𝐻

4−2𝐻, L2 log L
5H

4−2H].

• Dimensions 𝑑 ≥ 5: Surface is localized, with energy fluctuations of order 𝐿
𝑑

2. 21



Brief discussion of other disorders

• Periodic disorder: 𝑡 ↦ 𝜂𝑣,𝑡 is periodic with respect to the action of ℤ𝑛. Stationary 
to ℝ𝑛 action. For 𝑛 = 1, provides a “no vortices” approximation to the random-
field XY model. Magnetization of the spin model is then in correspondence with 
localization of the minimal surface. Also describes random-phase Sine-Gordon.

• Our localization results hold also for suitable periodic disorders (those satisfying 
(stat)+(conc)).
Thus, our proof that the 𝑑 ≥ 5 minimal surface is localized supports the prediction 
(still open in mathematics) that the random-field XY model retains its 
ferromagnetic phase at weak disorder and low temperatures in dimensions 𝑑 ≥ 5.

• Linear disorder: 𝜂𝑣,𝑡 = 𝜂𝑣 ⋅ 𝑡. With, e.g., each 𝜂𝑣 distributed 𝑁 0,1  (much like 
fractional Brownian motion with Hurst parameter 𝐻 = 1).
An exactly-solvable case termed random-rod, or Larkin model in physics literature.

• Height fluctuations 𝐿
4−𝑑

2  for 𝑑 = 1,2,3, log 𝐿 for 𝑑 = 4 and localized for 𝑑 ≥ 5.

• Integer-valued version: Dario–Harel–P. 2023 prove localization for 𝑑 ≥ 3 at weak 
disorder strength 𝜆.
Conjecture a roughening transition as disorder strength increases for 𝑑 = 3.
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Selected open questions
• Improved exponents: For instance, for 𝑑 = 1 is there a (large) 𝑛 for which the 

transversal fluctuations are of order 𝐿? 

• Periodic disorder (e.g., random-phase sine-Gordon 𝑛 = 1, Giamarchi–Le Doussal 
95, Nattermann 90, Orland–Shapir 95, Villain–Fernandez 84):
𝑑 = 2: Predictions of “super-roughening” (delocalization to height log 𝐿).

𝑑 = 3: Delocalization to height log 𝐿. 

Supports power-law magnetization decay prediction for 𝑑 = 3 random-field XY 
model (Feldman 01, Gingras–Huse 96). What happens in dimension 𝑑 = 4? 

• Integer-valued heights (n=1): Is there a roughening transition in the disorder 
strength in dimension 𝑑 = 3?
Conjectured in Bassan–Gilboa–P. 23 for domain wall of random-bond Ising model.
Conjectured for linear disorder in Dario–Harel–P. 23.

• Shape of the energy and fluctuation distribution:
Prove unimodality of the distribution and concentration
bounds on the scale of its standard deviation. 
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